Summary

\{ADJ>>THUMB>>INDEX>>MIDDLE>>PINKY>>RING\} that accounts for opposed handshapes in Taiwan SL correctly predicts for larger ASLLEX 2.0 dataset that selection of:

- the maximal number of fingers is most optimal/frequent
- fingers that are not physically next to each other is least optimal/frequent

Terminology

- Selected fingers: those that are (i) moving OR (ii) not fully flexed or fully extended OR (iii) are fully extended. Does not include the thumb.
- Opposed handshape: selected fingers touch the thumb

1. About this study

- Application of Ann \& Peng (2000)'s (hereafter A\&P) analysis of Taiwan SL to ASL. A\&P:
- propose the following ranking (see 3 for constraints) $\{\{A D J \gg$ THUMB \gg INDEX \gg MIDDLE \gg PINKY \gg RING\}, EXT¹ $\}$ based on relative frequencies of $\mathbf{1 9 6}$ signs with opposed handshapes
- hypothesise that handshape frequencies follow from constraint ranking
- This paper analyses $\mathbf{8 1 2}$ signs with opposed handshapes from ASL-LEX 2.0 (Sehyr et al. 2021)
${ }^{1}$ EXTension excluded from this analysis

2. Frequencies of all logically-possible combinations of the fingers (Sehyr et al. 2021)
 Find videos of signs by searching gloss on https://asl-lex.org/visualization/. i=index, m=middle finger, $r=$ ring finger, $p=$ pinky finger

Possible combination

4. Analysis \{ADJ>>THUMB>>INDEX>>MIDDLE>PINKY>>RING\}

- The ranking favours handshapes that select fingers:
- closer to the thumb
- next to each other
- Correct predictions
- ip, ir, mp, rp, imp and irp least favoured - all are unattested
- imrp most favoured - accounts for $\sim 50 \%$ of the data
- Incorrect predictions
- im>i. Actual $=\mathrm{i}>\mathrm{im}$
- Constraints do not account for seeming preference to select the maximal and minimal number of fingers (closest to the thumb)

